Stabilization by Sparse Controls for a Class of Semilinear Parabolic Equations
نویسندگان
چکیده
Stabilization problems for parabolic equations with polynomial nonlinearities are investigated in the context of an optimal control formulation with a sparsity enhancing cost functional. This formulation allows that the optimal control completely shuts down once the trajectory is sufficiently close to a stable steady state. Such a property is not present for commonly chosen control mechanisms. To establish these results it is necessary to develop a function space framework for a class of optimal control problems posed on infinite time horizons, which is otherwise not available. AMS subject classifications. 35K58, 49J20, 49J52, 49K20,
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملHybrid Optimal Control Problems for a Class of Semilinear Parabolic Equations
A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may change. Firstand secondorder optimality conditions are derived. The analysis is based on a reformulation involving a judiciously chosen transformation ...
متن کاملHamiltonian Pontryagin’s Principles for Control Problems Governed by Semilinear Parabolic Equations
In this paper we study optimal control problems governed by semilinear parabolic equations. We obtain necessary optimality conditions in the form of an exact Pontryagin’s minimum principle for distributed and boundary controls (which can be unbounded) and bounded initial controls. These optimality conditions are obtained thanks to new regularity results for linear and nonlinear parabolic equati...
متن کاملNotes on Global Attractors for a Class of Semilinear Degenerate Parabolic Equations
We study the regularity and fractal dimension estimates of global attractors for a class of semilinear degenerate parabolic equations in bounded domains.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 55 شماره
صفحات -
تاریخ انتشار 2017